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1 Introduction

An important aspect of quantum mechanics is finding solutions |Ψ〉 to the time-independent
Schrodinger equation. For an arbitrary Hamiltonian Ĥ, it states in its full generality

Ĥ |Ψ〉 = E |Ψ〉 .

Physically, E corresponds to energy, but mathematically E just appears to be an eigenvalue
of Ĥ. Rearranging the Schrodinger equation, (Ĥ − EÎ) |Ψ〉 = 0; thus, the problem boils
down to computing what seems to be the null-space of a new operator Ĥ−EÎ where Î is the
identity operator and E varies in R. The set of E such that Ĥ −EÎ is “pathological” has a
special name, called the spectrum σ(Ĥ). In the next section we will define exactly what we
mean by “pathological,” and shed more light on the subtleties of this problem.

2 What exactly is the spectrum?

Let T be a linear operator T : X −→ X, where X is a complex Banach space. For any λ ∈ C,
define the resolvent mapping Rλ(T ) : X −→ X of T as Rλ(T ) = (T − λI)−1. If Rλ(T ) is
single-valued, is bounded, and is defined on a domain that’s dense in X, then λ ∈ ρ(T ).
Here, ρ(T ) is called the resolvent set of T and λ is called a regular value of T . Otherwise,
λ ∈ σ(T ), whereby σ(T ) is called the spectrum of T and λ is a spectral value of T . Depending
on which of the conditions for λ ∈ ρ(T ) were violated, λ falls into one of three sets:

• Point spectrum: If Rλ(T ) is multi-valued (i.e., T −λI is not injective), then λ ∈ σp(T ).

• Continuous spectrum: If Rλ(T ) is single-valued and has a dense domain, but Rλ(T ) is
unbounded, then λ ∈ σc(T ).

• Residual spectrum: If Rλ(T ) exists but doesn’t have a dense domain, then λ ∈ σr(T ).

These three cases are disjoint and account for all λ ∈ σ(T ), so σ(T ) = σp(T )∪σc(T )∪σr(T ).
Furthermore, ρ(T ) and σ(T ) are disjoint and account for all λ ∈ C, so together the three
spectra and the resolvent set partition C:

C = ρ(T ) ∪ σp(T ) ∪ σc(T ) ∪ σr(T ).

In the case that T = Ĥ and X = H where Ĥ is a self-adjoint Hamiltonian and H is a
Hilbert space, it turns out that there is no residual spectrum. There are non-self-adjoint
Hamiltonians that do admit a residual spectrum[1], but these are beyond the scope of this
discussion; thus, we limit ourselves to point spectra and continuous spectra.
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2.1 Point spectra

Let λ ∈ σp(T ). By definition, Rλ(T ) = (T − λI)−1 doesn’t exist. This implies that T − λI is
not injective and has a non-trivial null-space. So, there is some v ∈ null(T − λI), v 6= 0 such
that (T − λI)v = Tv − λv = 0. This is a familiar situation from linear algebra: Tv = λv.
Indeed, λ is called eigenvalue of T and v is called an eigenvector of T . For this specific v, T
behaves like scalar multiplication by λ.

Sometimes T only has a point spectrum. For instance, this happens in the Hamiltonians for
the quantum harmonic oscillator and the hydrogen atom. These examples illuminate why
the point spectrum has its name: it typically consists of countably many discrete points.

Figure 1: The spectrum of the Hamiltonian for the hydrogen atom corresponds to its emission
spectrum[2]

To instantiate T concretely, let Ĥ be a Hamiltonian with a countably infinite point spectrum

σ(Ĥ) = {En | n ∈ Z+ ∪ {0}}.

Furthermore, let |ψn〉 be the normalized energy eigenvector associated with En. It turns out
that eigenvectors corresponding to different eigenvalues are orthogonal, even in this abstract
setting. Indeed, let |ψi〉 and |ψj〉 be distinct eigenvectors. Then,

〈ψi| Ĥ |ψj〉 = Ej 〈ψi | ψj〉 .

But also

〈ψi| Ĥ |ψj〉 =
(
〈ψj| Ĥ |ψi〉

)†
= Ei (〈ψj | ψi〉)† = Ei 〈ψi | ψj〉 .

Since Ei and Ej are distinct, 〈ψi | ψj〉 = 0. Now, this along with the assumption that each En
corresponds only to one eigenvector allows us to write |Ψ〉, the general normalized solution

2



2.2 Continuous spectra Spectral Theory in QM

Grant Kluber
DRP

May 6, 2020

to the time-independent Schrodinger equation, in the following form:

|Ψ〉 =
∞∑
n=0

cn |ψn〉 ,

∞∑
n=0

|cn|2 = 1, 〈ψi | ψj〉 = δij.

Here, δij is the Kronecker delta (not to be confused with the Dirac delta function). The
representation follows because the eigenvectors |ψn〉 are dense in H, so they form a (complete)
orthonormal basis. Ultimately, the upshot of it is that we can derive a new representation

Ĥ =
∞∑
n=0

En |ψn〉 〈ψn| .

Each outer product |ψn〉 〈ψn| corresponds to a projection operator onto the null-space of
Ĥ −EnÎ. This is fundamentally what the spectral theorem, the highlight of spectral theory,
is about.

2.2 Continuous spectra

Let λ ∈ σc(T ). Recall that this means that Rλ(T ) is unbounded. Formally, there exists a
sequence of vectors (xn) such that ‖xn‖ = 1, which maps to an image sequence (yn) whereby
yn = Rλ(T )xn and

lim
n−→∞ ‖yn‖ =∞.

But since (T − λI)Rλ(T ) = I, ‖xn‖ = ‖(T − λI)yn‖ and

lim
n−→∞ ‖(T − λI)yn‖ = 1.

Hopefully, this makes the issue clear. T −λI sends the divergent sequence (yn) to something
convergent. By linearity, this is equivalent to saying that T − λI sends (yn/ ‖yn‖) to an
arbitrarily small vector. Thus, (yn/ ‖yn‖) gives a sequence of normalized approximate eigen-
vectors, because having an image with norm ≈ 0 almost puts them in the null-space of the
operator T − λI. Sometimes λ is also called an approximate eigenvalue.

It’s possible for T to only have a continuous spectrum. For instance, the Hamiltonian cor-
responding to the free particle, a particle that isn’t bound by any potential, has a purely
continuous spectrum.

To illustrate the properties of continuous spectra, let p̂ be the momentum operator, given by
the following formula:

p̂ = −i~ ∂
∂x
.
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If we let ψ(x) be a solution to the equation p̂ψ(x) = pψ(x), then

ψ(x) = Ceipx/~, C ∈ C.

The issue is that ψ(x) is not localized, so it’s not a well-defined wave-function. But, if we pre-
tend that ψ(x) exists, something interesting happens. Let ψp(x) and ψp′(x) be eigenfunctions
of p̂ corresponding to eigenvalues p and p′, respectively. Then, it turns out that

〈ψp | ψp′〉 = δ(p− p′)

where δ(·) is the Dirac delta function. The twisted version of orthonormality we’ve recovered
here is called Dirac orthonormality [5]. Moreover, ψp(x) is exactly the divergent limit of vectors
(yn). In fact, Dirac orthonormality tells us

‖ψp‖ = 〈ψp | ψp〉 = δ(0) =∞.

3 Applied to Quantum Mechanics

There are two theorems of significant practical importance from spectral theory. The first is
called the spectral theorem. Just like in the example in the point spectrum section, it allows us
to decompose an arbitrary self-adjoint operator into projection operators. The exact details
are somewhat complicated because of continuous spectra, which requires Riemann-Stieltjes
integration, but the following example will embody the idea behind theorem.

Let Ĥ be the Hamiltonian from the point spectrum section and suppose we want to compute
Ĥp where p ∈ Z+. Using the definition

Ĥ = − ~2

2m

∂2

∂x2
+ V (x)

we would have to solve a differential equation of order 2p. Yuck! Luckily, we can use the
other representation

Ĥ =
∞∑
n=0

En |ψn〉 〈ψn| .

To illustrate, expand Ĥ2 as

Ĥ2 =

(
∞∑
n=0

En |ψn〉 〈ψn|

)2

=
∞∑
m=0

∞∑
n=0

EmEn |ψm〉 〈ψm | ψn〉 〈ψn|

=
∞∑
m=0

∞∑
n=0

δmnEmEn |ψm〉 〈ψn|

=
∞∑
n=0

E2
n |ψn〉 〈ψn| .
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By induction, it follows that Ĥp =
∑∞

n=0E
p
n |ψn〉 〈ψn|. Using the fact that polynomials are

dense in the set of continuous functions on bounded domains, an even more general result
follows for a continuous function f :

f(Ĥ) =
∞∑
n=0

f(En) |ψn〉 〈ψn| .

These are the two main elements of the spectral theorem, decomposing Ĥ into projection
operators and extending polynomials of Ĥ to arbitrary continuous functions f .

There is a second theorem of practical importance, called the spectral mapping theorem.
To illustrate it, consider the following example. Let Ĥ be an arbitrary Hamiltonian. This
describes a quantum system under unitary evolution U(t), where

U(t) = e−iĤt/~.

Naively, computing the spectrum of U(t) would involve explicitly the operator e−iĤt/~. But,
it’s too cumbersome and seems to depend strongly on Ĥ. This is where the spectral mapping
theorem comes in, also known as the continuous functional calculus [4] in the context of C∗

algebras, which states that for a continuous function f and operator T ,

σ(f(T )) = f(σ(T )).

Instantiating f(x) = e−ixt/~,

σ(U(t)) = σ(f(Ĥ)) = f(σ(Ĥ)) = {e−iλt/~ | λ ∈ σ(Ĥ)}.

It seems like we could have solved the problem by expanding the matrix exponential as a
Maclaurin series, but note that this strategy fails to account for the continuous spectrum.
Thus, we have both achieved a more elegant and more general result.
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