1 Introduction

An important aspect of quantum mechanics is finding solutions $|\Psi\rangle$ to the time-independent Schrödinger equation. For an arbitrary Hamiltonian \hat{H} , it states in its full generality

$$\hat{H} |\Psi\rangle = E |\Psi\rangle.$$

Physically, E corresponds to energy, but mathematically E just appears to be an eigenvalue of \hat{H} . Rearranging the Schrodinger equation, $(\hat{H} - E\hat{I}) |\Psi\rangle = 0$; thus, the problem boils down to computing what *seems* to be the null-space of a new operator $\hat{H} - E\hat{I}$ where \hat{I} is the identity operator and E varies in \mathbb{R} . The set of E such that $\hat{H} - E\hat{I}$ is "pathological" has a special name, called the *spectrum* $\sigma(\hat{H})$. In the next section we will define exactly what we mean by "pathological," and shed more light on the subtleties of this problem.

2 What exactly is the spectrum?

Let T be a linear operator $T: X \to X$, where X is a complex Banach space. For any $\lambda \in \mathbb{C}$, define the *resolvent* mapping $R_{\lambda}(T): X \to X$ of T as $R_{\lambda}(T) = (T - \lambda I)^{-1}$. If $R_{\lambda}(T)$ is single-valued, is bounded, and is defined on a domain that's dense in X, then $\lambda \in \rho(T)$. Here, $\rho(T)$ is called the *resolvent set* of T and λ is called a *regular value* of T. Otherwise, $\lambda \in \sigma(T)$, whereby $\sigma(T)$ is called the *spectrum* of T and λ is a *spectral value* of T. Depending on which of the conditions for $\lambda \in \rho(T)$ were violated, λ falls into one of three sets:

- Point spectrum: If $R_{\lambda}(T)$ is multi-valued (i.e., $T \lambda I$ is not injective), then $\lambda \in \sigma_p(T)$.
- Continuous spectrum: If $R_{\lambda}(T)$ is single-valued and has a dense domain, but $R_{\lambda}(T)$ is unbounded, then $\lambda \in \sigma_c(T)$.
- Residual spectrum: If $R_{\lambda}(T)$ exists but doesn't have a dense domain, then $\lambda \in \sigma_r(T)$.

These three cases are disjoint and account for all $\lambda \in \sigma(T)$, so $\sigma(T) = \sigma_p(T) \cup \sigma_c(T) \cup \sigma_r(T)$. Furthermore, $\rho(T)$ and $\sigma(T)$ are disjoint and account for all $\lambda \in \mathbb{C}$, so together the three spectra and the resolvent set partition \mathbb{C} :

$$\mathbb{C} = \rho(T) \cup \sigma_p(T) \cup \sigma_c(T) \cup \sigma_r(T).$$

In the case that $T = \hat{H}$ and X = H where \hat{H} is a self-adjoint Hamiltonian and H is a Hilbert space, it turns out that there is no residual spectrum. There are non-self-adjoint Hamiltonians that do admit a residual spectrum^[1], but these are beyond the scope of this discussion; thus, we limit ourselves to point spectra and continuous spectra.

Spectral Theory in QM

2.1 Point spectra

Let $\lambda \in \sigma_p(T)$. By definition, $R_{\lambda}(T) = (T - \lambda I)^{-1}$ doesn't exist. This implies that $T - \lambda I$ is not injective and has a non-trivial null-space. So, there is some $v \in \text{null}(T - \lambda I), v \neq 0$ such that $(T - \lambda I)v = Tv - \lambda v = 0$. This is a familiar situation from linear algebra: $Tv = \lambda v$. Indeed, λ is called *eigenvalue* of T and v is called an *eigenvector* of T. For this specific v, Tbehaves like scalar multiplication by λ .

Sometimes T only has a point spectrum. For instance, this happens in the Hamiltonians for the quantum harmonic oscillator and the hydrogen atom. These examples illuminate why the point spectrum has its name: it typically consists of countably many discrete points.

Figure 1: The spectrum of the Hamiltonian for the hydrogen atom corresponds to its emission spectrum^[2]

To instantiate T concretely, let \hat{H} be a Hamiltonian with a countably infinite point spectrum

$$\sigma(\hat{H}) = \{ E_n \mid n \in \mathbb{Z}^+ \cup \{0\} \}.$$

Furthermore, let $|\psi_n\rangle$ be the normalized energy eigenvector associated with E_n . It turns out that eigenvectors corresponding to different eigenvalues are orthogonal, even in this abstract setting. Indeed, let $|\psi_i\rangle$ and $|\psi_j\rangle$ be distinct eigenvectors. Then,

$$\langle \psi_i | H | \psi_j \rangle = E_j \langle \psi_i | \psi_j \rangle.$$

But also

$$\langle \psi_i | \hat{H} | \psi_j \rangle = \left(\langle \psi_j | \hat{H} | \psi_i \rangle \right)^{\dagger} = E_i \left(\langle \psi_j | \psi_i \rangle \right)^{\dagger} = E_i \left\langle \psi_i | \psi_j \rangle.$$

Since E_i and E_j are distinct, $\langle \psi_i | \psi_j \rangle = 0$. Now, this along with the assumption that each E_n corresponds only to one eigenvector allows us to write $|\Psi\rangle$, the general normalized solution

2.2 Continuous spectral Spectral Theory in QM

to the time-independent Schrodinger equation, in the following form:

$$\begin{split} |\Psi\rangle &= \sum_{n=0}^{\infty} c_n |\psi_n\rangle \,,\\ \sum_{n=0}^{\infty} |c_n|^2 &= 1, \quad \langle \psi_i \mid \psi_j \rangle = \delta_{ij}. \end{split}$$

Here, δ_{ij} is the Kronecker delta (not to be confused with the Dirac delta function). The representation follows because the eigenvectors $|\psi_n\rangle$ are dense in H, so they form a (complete) orthonormal basis. Ultimately, the upshot of it is that we can derive a new representation

$$\hat{H} = \sum_{n=0}^{\infty} E_n |\psi_n\rangle \langle\psi_n|.$$

Each outer product $|\psi_n\rangle \langle \psi_n|$ corresponds to a projection operator onto the null-space of $\hat{H} - E_n \hat{I}$. This is fundamentally what the spectral theorem, the highlight of spectral theory, is about.

2.2 Continuous spectra

Let $\lambda \in \sigma_c(T)$. Recall that this means that $R_{\lambda}(T)$ is unbounded. Formally, there exists a sequence of vectors (x_n) such that $||x_n|| = 1$, which maps to an image sequence (y_n) whereby $y_n = R_{\lambda}(T)x_n$ and

$$\lim_{n \to \infty} \|y_n\| = \infty.$$

But since $(T - \lambda I)R_{\lambda}(T) = I$, $||x_n|| = ||(T - \lambda I)y_n||$ and

$$\lim_{n \to \infty} \| (T - \lambda I) y_n \| = 1.$$

Hopefully, this makes the issue clear. $T - \lambda I$ sends the divergent sequence (y_n) to something convergent. By linearity, this is equivalent to saying that $T - \lambda I$ sends $(y_n/||y_n||)$ to an arbitrarily small vector. Thus, $(y_n/||y_n||)$ gives a sequence of normalized *approximate eigen*vectors, because having an image with norm ≈ 0 almost puts them in the null-space of the operator $T - \lambda I$. Sometimes λ is also called an *approximate eigenvalue*.

It's possible for T to only have a continuous spectrum. For instance, the Hamiltonian corresponding to the free particle, a particle that isn't bound by any potential, has a purely continuous spectrum.

To illustrate the properties of continuous spectra, let \hat{p} be the momentum operator, given by the following formula:

$$\hat{p} = -i\hbar \frac{\partial}{\partial x}.$$

Spectral Theory in QM

If we let $\psi(x)$ be a solution to the equation $\hat{p}\psi(x) = p\psi(x)$, then

$$\psi(x) = Ce^{ipx/\hbar}, \quad C \in \mathbb{C}.$$

The issue is that $\psi(x)$ is not localized, so it's not a well-defined wave-function. But, if we pretend that $\psi(x)$ exists, something interesting happens. Let $\psi_p(x)$ and $\psi_{p'}(x)$ be eigenfunctions of \hat{p} corresponding to eigenvalues p and p', respectively. Then, it turns out that

$$\langle \psi_p \mid \psi_{p'} \rangle = \delta(p - p')$$

where $\delta(\cdot)$ is the Dirac delta function. The twisted version of orthonormality we've recovered here is called *Dirac orthonormality*^[5]. Moreover, $\psi_p(x)$ is exactly the divergent limit of vectors (y_n) . In fact, Dirac orthonormality tells us

$$\|\psi_p\| = \langle \psi_p \mid \psi_p \rangle = \delta(0) = \infty.$$

3 Applied to Quantum Mechanics

There are two theorems of significant practical importance from spectral theory. The first is called the *spectral theorem*. Just like in the example in the point spectrum section, it allows us to decompose an arbitrary self-adjoint operator into projection operators. The exact details are somewhat complicated because of continuous spectra, which requires Riemann-Stieltjes integration, but the following example will embody the idea behind theorem.

Let \hat{H} be the Hamiltonian from the point spectrum section and suppose we want to compute \hat{H}^p where $p \in \mathbb{Z}^+$. Using the definition

$$\hat{H} = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x)$$

we would have to solve a differential equation of order 2p. Yuck! Luckily, we can use the other representation

$$\hat{H} = \sum_{n=0}^{\infty} E_n \ket{\psi_n} \langle \psi_n |.$$

To illustrate, expand \hat{H}^2 as

$$\hat{H}^{2} = \left(\sum_{n=0}^{\infty} E_{n} |\psi_{n}\rangle \langle\psi_{n}|\right)^{2} = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} E_{m} E_{n} |\psi_{m}\rangle \langle\psi_{m} |\psi_{n}\rangle \langle\psi_{n}|$$
$$= \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \delta_{mn} E_{m} E_{n} |\psi_{m}\rangle \langle\psi_{n}|$$
$$= \sum_{n=0}^{\infty} E_{n}^{2} |\psi_{n}\rangle \langle\psi_{n}|.$$

Spectral Theory in QM

By induction, it follows that $\hat{H}^p = \sum_{n=0}^{\infty} E_n^p |\psi_n\rangle \langle \psi_n|$. Using the fact that polynomials are dense in the set of continuous functions on bounded domains, an even more general result follows for a continuous function f:

$$f(\hat{H}) = \sum_{n=0}^{\infty} f(E_n) |\psi_n\rangle \langle \psi_n|.$$

These are the two main elements of the spectral theorem, decomposing \hat{H} into projection operators and extending polynomials of \hat{H} to arbitrary continuous functions f.

There is a second theorem of practical importance, called the *spectral mapping theorem*. To illustrate it, consider the following example. Let \hat{H} be an arbitrary Hamiltonian. This describes a quantum system under unitary evolution U(t), where

$$U(t) = e^{-i\hat{H}t/\hbar}.$$

Naively, computing the spectrum of U(t) would involve explicitly the operator $e^{-i\hat{H}t/\hbar}$. But, it's too cumbersome and seems to depend strongly on \hat{H} . This is where the spectral mapping theorem comes in, also known as the *continuous functional calculus*^[4] in the context of C^* algebras, which states that for a continuous function f and operator T,

$$\sigma(f(T)) = f(\sigma(T)).$$

Instantiating $f(x) = e^{-ixt/\hbar}$,

$$\sigma(U(t)) = \sigma(f(\hat{H})) = f(\sigma(\hat{H})) = \{e^{-i\lambda t/\hbar} \mid \lambda \in \sigma(\hat{H})\}.$$

It seems like we could have solved the problem by expanding the matrix exponential as a Maclaurin series, but note that this strategy fails to account for the continuous spectrum. Thus, we have both achieved a more elegant and more general result.

4 References

- 1. https://en.wikipedia.org/wiki/Non-Hermitian_quantum_mechanics.
- 2. https://glossary.periodni.com/glossary.php?en=Balmer+series.
- 3. Introductory Functional Analysis and Applications by Kreyszig.
- 4. C^* -Algebras by Example by Kenneth B. Davidson.
- 5. Introduction to Quantum Mechanics Second Edition by David J. Griffiths.